Radiographic Evaluation of Permanent Canine Development Based on Nollas Stage of Tooth Development In 6–8-Year-Old Male Children

G. NITHYA KARPAGAM¹, DR. BHAGYA LAKSHMI T²*, DR. DINESH PRABU³

¹Saveetha Dental College and Hospitals, Saveetha Institute Of Medical And Technical Science, Saveetha University, 162, Poonamallee High Road, Chennai, India
²Senior Lecturer, Department Of Pediatric and Preventive Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute Of Medical And Technical Science, Saveetha University, 162, Poonamallee High Road, Chennai, India
³Senior Lecturer, Department Of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute Of Medical And Technical Science, Saveetha University, 162, Poonamallee High Road, Chennai, India

*Corresponding Author

Email ID: 151501035.sdc@saveetha.com¹, bhagyalakshmit.sdc@saveetha.com², dineshprabum.sdc@saveetha.com³

Abstract: The aim of this study is to radiographically evaluate the permanent canine development based on nollas stage of tooth development in 6 to 8 year old male children. A total of about 400 orthopantamograhic (OPG) images were collected from the database record of the dental institution between June 2019-March 2020. Of these 51 OPGs were selected based on the age group between 6-8 years old male children. Dental age of developing permanent canine was calculated based on the nollas method. After data collection statistical analysis was done in SPSS software. Among the study population 47.1% were 8 years old, 45.10% were 7 years old and 7.84% were 6 years old. Considering the distribution of teeth assessed 31.37% were 13, 31.37% were 43, 21.57% were 33 and 15.69% were 23. Within the limitations of the study it was concluded that, majority of the canine teeth assessed among 6 to 8 years old children had canine almost completed (Stage 5) or crown completed (Stage 6) according to Nollas stage of tooth development. All the children in the age group of 6 years had 2/3rd crown completed in canine (Stage 4). Majority of the children in the age group of 7 years and 8 years had ‘crown almost completed’ (Stage 5).

Keywords: Calcification, Canine development, Dental Age, Maturation, Nollas stage, innovative technique

INTRODUCTION

Dental age assessment plays an important role in forensic medicine, Pediatric dentistry and orthodontic treatment planning. (Koshy and Tandon, 1998) Age determination pertains to many fields. It is also useful to identify individuals who provide inaccurate details of age as in case of illegal immigrants or a corpse with an unknown identity. (Sinha et al., 2014) In the absence of the chronological age, a reliable method is needed for the assessment of the growth status of the child to plan different treatment modalities. The growth status can be assessed by height, weight, gender, chronological age, dental age, and skeletal age of a child. (Nolla and Others, 1952) Differences between chronological and biological age have led to the development of different indicators of maturity such as skeletal age, morphological, sexual and dental age. (Nolla and Others, 1952; Moorrees, Fanning and Hunt, 1963; Proffit, Fields and Sarver, 2014)

Dental age can be assessed by observing the degree of calcification of the teeth on radiographs. Tooth calcification is more reliable indicator of dental maturity than tooth eruption because it is not affected by local factors such as loss of primary teeth, lack of space, malnutrition, dental decay, ankylosis, orthodontic modalities, in addition to ge under genetic control. (Demirjian, Goldstein and Tanner, 1973) Maintenance of oral health has an important role in the general well being of an individual. (Christabel and Gurunathan, 2015; Gurunathan and Shanmugaavel, 2016; Packiri, Gurunathan and Selvarasu, 2017) The maintenance of primary dentition is essential to guide the eruption of permanent teeth. (Ravikumar, Jeevanandan and Subramanian, 2017; Subramanyam et al., 2018) Pulpectomy is the treatment of choice for non vital primary teeth which will help in maintaining the teeth for a longer period of time in the oral cavity. (Govindaraju, Jeevanandan and E. M. G. Subramanian, 2017a, 2017b; Govindaraju, Jeevanandan and E. Subramanian, 2017; JeevananDan, 2017)
The dental system is considered as an integral part of the human body; its growth and development can be studied in comparison with other physiological maturity indicators. Nollas method is based on 10 stages of tooth development (Nolla and Others, 1952). Stage 0—absence of crypt, stage 1—presence of crypt, stage 2—initial calcification, stage 3—one third crown completed, stage 4—two third crown completed, stage 5—crown almost completed, stage 6—crown completed, stage 7—one third of the root.

Dental age estimation is of particular interest to the pediatric dentist and orthodontist in planning the treatment of different types of malocclusion in relation to maxillofacial growth (Falkner, 1957). In patients with delayed maturity, orthodontic treatment may be started at a later stage thus leading to the shorter treatment duration and more stable result. In case of over-retained deciduous teeth, the method facilitates determination of the right time for starting the treatment. The correlation between dental and chronological age is also useful in the forensic dentistry as well to infer the age or to identify the child (Williams, 2001).


MATERIALS AND METHOD

Study Setting:
The study was conducted with the approval of the Institutional Ethics Committee [SDC/SIHEC/2020/DIASDATA/0619-0320]. The study consisted of one reviewer, one assessor and one guide.

Study Design:
The study was designed to include all children aged between 6-8 years male children and only permanent canine were included. The children who did not fall under this inclusion criteria were excluded.

Sampling technique:
The study was based on Random sampling method. To minimise the sampling bias, all the cases were reviewed priorly and included.

Data Collection And Tabulation
Data collection was done using the patient database with the timeframe work of 1st June 2019 to 31st th March 2020. About 400 OPGs were reviewed and those fitting under the inclusion criteria were included. Cross verification of data was done by a reviewer. The collected data was tabulated based on the following parameters:
- Patients demographic details
- Tooth number (teeth were included which showed maximum maturation)
- Nollas stage of tooth development

Statistical Analysis:
The variables were coded and the data was imported to SPSS. Using SPSS Version 20.0 categorical variables were expressed in terms of frequency and percentage and bar graphs were plotted. The statistical significance of the associations were tested using the Chi-square test.

RESULT AND DISCUSSION
The dental system is considered as an integral part of the human body, its growth and development can be studied in comparison with other physiological maturity indicators. Nollas method is based on 10 stages of tooth development. It is accepted as the gold standard method over years. (Nolla and Others, 1952) Stage 0—absence of crypt, stage 1—presence of crypt, stage 2—initial calcification, stage 3—one third crown completed, stage 4—two third crown completed, stage 5—crown almost completed, stage 6—crown completed, stage 7—one third of the root.
completed, stage 8—two third of the root completed, stage 9—root completed apex open, stage 10—apical foramen closed.

A total of 51 OPGs were examined aged between 6–8 years old male children. Among the study population 47.1% were 8 years old, 45.10% were 7 years old and 7.84% were 6 years old. [Figure 1] [Figure 2] Shows the distribution of the tooth that is taken in the study. Among the study population 31.37% were 8 years old, 43, 21.57% were 33 and 15.69% were 23. Previous study shows that the maturity rate was faster in mandibular canine and females showed a faster maturity rate (Svanholt and Kjaer, 2008), [Figure 3] shows the distribution of the Nollas stage. It included 10 stages, out of which stage 4, 5, 7 and 8 were noted in the development of permanent canine. Majority of the teeth attained maximum development at stage 5 (35.29%), and least assessed at stage 8 (1.96%). [Figure 4] Shows the association between the age and nollas stage of tooth development. Majority of the children in the 6 years of age group attained stage 4 maturity of canine development. Majority of the children in age group of 7 and 8 attained stage 5 who had crown formation completed. However, the difference is statistically significant as the chi square test, p-value is 0.017 (p<0.05). [Figure 5] Shows the association between the number of the tooth and nollas stage of tooth development. It is assessed that 43 showed maximum development at stage 5, 33 showed almost equal development in stage 4, stage 5 and stage 7, 23 showed maximum development in stage 5 and 13 shows almost equal maturation in stage 4, stage 5 and stage 6. Chi square test, p value 0.776, p>0.05, statistically insignificant. Based on this analysis there is no association between tooth number and nollas stage. The limitation of the study is that only male gender was taken in this study and also limited sample size.

CONCLUSION
Within the limitations of the study it was concluded that, majority of the canine teeth assessed among 6 to 8 years old male children had canine almost completed (Stage 5) or crown completed (Stage 6) according to Nollas stage of tooth development. All the children in the age group of 6 years had 2/3rd crown completed in canine (Stage 4). Majority of the children in the age group of 7 years and 8 years had ‘crown almost completed’ (Stage 5).

ACKNOWLEDGMENT
The authors are thankful to the Director of Saveetha Dental College And Hospital, Chennai.

Authors Contribution
G. Nithya Karpagam has contributed to data collection, study design, data analysis, results, tables and manuscript preparation.
Dr. Bhagyalakshmi has contributed to the manuscript preparation, proof heading of the manuscript and reviewing the manuscript.
Dr Dinesh Prabu has contributed to reviewing the manuscript.

Conflict of Interest
There is no conflict of interest

REFERENCE
Fig.1: Shows the age distribution of male children assessed in this study; X axis - age of the male children between 6-8 years, Y axis - number of children. Among the study population 47.1% were 8 years old (blue), 45.10% were 7 years old (red) and 7.84% were 6 years old (green).

Fig.2: Shows the tooth distribution based on Nolla’s stage of tooth development assessed in this study; X axis - distribution of tooth number, Y axis - number of teeth. Among the teeth assessed majority were right upper canine - 13 (31.37%) (violet) and right lower canine - 4 (33.37%) (blue).
Fig. 3: Shows the distribution of Nollas stage of tooth development assessed in this study. X axis - distribution of nollas stage of tooth development, Y axis - number of teeth. Majority of the teeth assessed were at Nollas stage 5 tooth development (crown almost completed)(35.29% - orange) followed by stage 6 (crown completed)(27.45% - green).

Fig. 4: Shows the association between the age and nollas stage of tooth development. X axis - distribution of nollas stage of tooth development in canine, Y axis - number of children. All the children in 6 years of age group (green) attained stage 4 of canine development (2/3rd crown completed). Majority of the children in the age group of 7 (brown) and 8 (blue) attained stage 5 who had 'crown almost completed'. This association between the age and nollas stage of tooth development was statistically significant Chi square test, p-value is 0.017, p<0.05, statistically significant.
Fig. 5: Shows the association between the tooth number and Nollas stage of tooth development. X axis - distribution of tooth number, Y axis - number of children. Tooth number 13, 23 and 33 showed different stages of development from stage 4 (pink) to stage 7 (blue). 43 presented with all five stages of development. Based on the statistical analysis it was inferred that the quadrant which the canine belonged to did not influence the stage of tooth development. Chi square test, p value - 0.776, p(>0.05), statistically insignificant.