Prevalence and gender association of radix entomolaris in mandibular molars

MOHAMAD QULAM ZAKI BIN MOHAMAD RASIDI¹, DEEPAK.S²*, DINESH PRABU³

¹Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
²Senior Lecturer, Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
³Senior Lecturer, Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.

*Corresponding Author
Email ID: 151501099.sdc@saveetha.com¹, deepaks.sdc@saveetha.com, dineshrabum.sdc@saveetha.com

Abstract: Endodontic treatment with excellent outcomes depends on the critical identification of the root and its canals anatomy. The successful identification of these anatomies guaranteed the pulp tissue extirpation completely, with efficiency in chemo-mechanical cleaning and shaping. All these lead to three-dimensional root canal obturation with the most reliable inert filling. Therefore, the aim of this study was to evaluate the occurrence of radix entomolaris in mandibular molars between male and female patients. A total of 1503 patient records were reviewed and analyzed from June 2019 to March 2020 in Saveetha Dental College. All 1503 patients were assessed for the radix entomolaris, data entered in Microsoft excel sheet, and transferred to SPSS software for statistical results. The Chi-Square test was done to analyze the correlation between the gender prevalence of radix entomolaris in mandibular first molars. The prevalence of patients with Radix Entomolaris was 0.5% (7 of 1503), 0.47% (4 of 843) for females, and 0.45% (3 of 660) for males, which showed statistically insignificant (p-value >0.05). Within the limitations of the study, there is no significant evidence suggesting that gender plays a major role in the occurrence of Radix Entomolaris.

Keywords: Gender; Radix Entomolaris; Root canal anatomy; Root canal treatment.

INTRODUCTION
The excellent root canal treatment with a high success rate depends on the complete elimination of microorganisms and their products. It is a rare case for mandibular molars to have one additional root. The additional root is located on the distolingual surface of mandibular first molars. This rare anatomical structure is called Radix Entomolaris (RE). (Chandra et al., 2011) However, if the additional root is located mesiolingual, it is called as Radix Paramolaris. (Garg et al., 2010) Both radix entomolaris and radex paramolaris can be suggested with normal radiographic imaging in a routine examination. (Cohen and Burns, 2002)

The mandibular first molars normally have two roots, which are one mesial root and one distal root. In the mesial root of the mandibular molar, have two canals; mesiobucal canal and mesiolingual canal. These canals may end in two distinct apical foramina. However, there are occurrences of canals emerge together and form only one foramen. In the distal root, it may have one canal, although rarely it has two canals. The previous studies depicted that there is an association between the presence of radix entomolaris and various ethnic groups, regard to their gender. (Calberson, De Moor and Deroose, 2007) For example, in the Mongoloid traits population (Eskimos, Chinese, and American-Indians), the occurrence of the radix entomolaris is between 5% and 30% which is more frequent. Meanwhile, in the European population, the occurrence of radix entomolaris is less. (Souza-Flamini et al., 2014)

The endodontic treatment with excellent outcomes depends on the critical identification of the root and its canals anatomy. The successful identification of these anatomies guaranteed the pulp tissue extirpation completely, with efficiency in chemo-mechanical cleaning and shaping. (Bahammam and Bahammam, 2012; Rajendran et al., 2019a) All these lead to the most proper three-dimensionally root canal obturation with the most reliable inert filling. The radiographic imaging for identification purposes in additional roots in mandibular molars is an important step as it identifies all root canals which are to be instrumented during the cleaning and shaping procedure of
endodontic treatment. The identification of extra root canals is essential as overlooked canals may lead to endodontic treatment failure due to the canal walls not undergoing proper chemomechanical preparation. The use of cone-beam volumetric tomography is highly recommended and more informative when the anomalies of root morphology are identified during routine periapical radiographic imaging. In these methods, the tube needs to be a shift with additional views taken from the medial or distal angle at 20 to 30 degrees. This technique is also known as the Parallax technique and it can help in delineate the root morphology according to the Buccal Object Rule. (Wang et al., 2011)

In the supernumerary roots of mandibular molars teeth, Radix Entomolaris or Radix Paramolaris may range from a short conical to a normal length. According to De Moor classification scheme, there are three main patterns for supernumerary roots curvatures which are Type I (straight root), Type II (curved in the coronal third and then straight continuing to the apex), and Type III (curved in the coronal third, with mesiobuccal curvature from the middle third to the apical third of the root). (Calberson, De Moor and Deroose, 2007)

The endodontic treatment with missing one or more of these criteria mentioned may lead to an increased risk of unsuccessful root canal treatment. The failure symptoms may appear like the subsequent development of periapical lesion persistence afterward. (Walker and Quackenbush, 1985; Shemesh et al., 2015; (Colak, Ozcan and Hamidi, 2012)

Previously our team had conducted numerous clinical trials (Ramamoorthi, Niveditha and Divyanand, 2015; Nandakumar and Nasim, 2018; Nasim et al., 2018; Janani, Palanivelu and Sandhya, 2020) and lab animal studies (Teja, Ramesh and Priya, 2018) and in-vitro studies (Ramanathan and Solete, 2015; Noor, S Syed Shihab and Pradeep, 2016; Ravingthar and Jayalakshmi, 2018; Rajakeerthi and Ms, 2019; Varghese, Ramesh and Veeraiyan, 2019; Gomathi, 2019b; Ramakrishnan, Dhanalakshmi and Govindaraju, 2018; J et al., 2018; Menon et al., 2018; Prabakar et al., 2018; Rajeshkumar et al., 2018, 2019; Vishnu Prasad et al., 2018; Wahab et al., 2018; Dua et al., 2019; Duraisamy et al., 2019; Ezhilarsan, Apoorva and Ashok Vardhan, 2019; Gheena and Ezhilarsan, 2019; Malli Sureshbabu et al., 2019; Mehta et al., 2019; Panchal, Jeeyananand and Subramaniam, 2019; Rajendran et al., 2019b; Ramakrishnan, Dhanalakshmi and Subramaniam, 2019; Sharma et al., 2019; Varghese, Ramesh and Veeraiyan, 2019; Gomathi et al., 2020; Samuel, Acharya and Rao, 2020)

Hence, the present study intends to evaluate the prevalence of the occurrence of Radix Entomolaris in the Chennai Population reporting to the Outpatient Department for various treatments and their gender prevalence.

MATERIALS AND METHODS
This retrospective clinical study evaluated the patients who underwent root canal treatment in first mandibular teeth and suggestive of Radix Entomolaris based on radiographic examination.

DATA EXTRACTION - Over 1503 patients’ records were selected for this study based on inclusion and exclusion criteria from June 2019 to March 2020.

Inclusion criteria- Presence of Radix Entomolaris in mandibular first molar.

Exclusion criteria - Normal root canal anatomy with no additional roots in mandibular first molar.

The collected data was entered in the Microsoft Excel sheet and grouping was done. The two parameters in this study were the gender of the patients and the presence of radix entomolaris in first mandibular molar teeth. After grouping of parameters, data copied to SPSS software. The statistical analysis between different groups was carried out in SPSS software. A Chi-square test was done to compare genders and the occurrence of Radix Entomolaris.

RESULTS AND DISCUSSION
Among 1503 patients the prevalence of patients with Radix Entomolaris was only 0.5% (7 of 1503). For females, the prevalence was 0.47% (4 of 843) and 0.45% for males (3 of 660) [Figure 1]. The results showed there is no significant difference between genders and the occurrence of Radix Entomolaris (P>0.05) [Figure 2]. In this present study, root canal treatment done in mandibular first molars are analyzed and correlated with the gender and occurrence of Radix Entomolaris. All the root canal of mandibular molars with Radix Entomolaris were segregated based on genders. Out of the total sample size of 1503 patients, 660 patients are male and 843 patients are females. The chi-square test shows an insignificant value P>0.05 between the occurrence of Radix Entomolaris and gender prevalence.

Here, 3 variables were assessed (Gender, Tooth Number, Presence of RE). The results show males have higher prevalence compared to females and the mandibular first molar having the highest percentage reported with Radix Entomolaris.
7 of 1503 samples have the occurrence of Radix Entomolaris, consisting of 4 males and 3 females. The prevalence of Radix Entomolaris was 0.5% (P>0.05), 0.47% for females and 0.45% for males [Graph 3]. In comparison with other studies, a study done in a population of Iranian shows a 6% prevalence of mandibular first molar teeth (15/250) and 0.8% prevalence of mandibular second molar teeth (2/250). The prevalence of Radix Entomolaris in first molars is 6% higher than reported rates in other research studies done in the European or Caucasian population previously. The prevalence of Radix Entomolaris in these two populations typically less than 2%, but much less than the Mongoloid trait. (Kuzekanani, Haghani and Nosrati, 2012; Kuzekanani et al., 2017)

Studies are done among the South Indian population reported by Chandra SS et al. which included 500 patients of South Indian origin reported an overall occurrence of 13.3% prevalence of Radix Entomolaris. This prevalence value was less than reported in other Asian populations, where the higher occurrence can be seen on the right side of the arch and in the female. (Chandra et al., 2011)

In a study done in the Palestinian population of 222 patients, the incidence of patients with three rooted mandibular first molars was 3.73%. The finding was in the range of previous reports on Middle Easterners, but it is considerably lower than the percentage if compared to the Far East population. (Mukhaimer and Azizi, 2014) This study used conventional two-dimensional radiographs for assessment of Radix Entomolaris, where it would be considered as a limitation in the clinical approach-methodology of this study. (Ahmed et al., 2007)

In a clinical study done by Mukhaimer and Azizi on a total of 322 mandibular first molars that underwent for root canal treatment at the Dental Center of the Arab American university reported that the incidence of Radix Entomolaris is 3.73% for the Palestinian group of patients which is within the range limits of previous reports of Middle East but lower than the far east significantly. (Mukhaimer and Azizi, 2014)

A retrospective study by Shemesh et al., a total of 1020 Israeli patients examined by using Cone Beam Computed Tomographic scans showed the Radix Entomolaris incidence of 2.03% in mandibular first and second molars of this population. In 26% of these cases, the Radix Entomolaris happened bilaterally while there was no significant difference in the incidence of the Radix Entomolaris between different genders or sites of occurrence. (Shemesh et al., 2015) Our institution is passionate about high quality evidence based research and has excelled in various fields (Pc, Marinuthu and Devadoss, 2018; Ramesh et al., 2018; Ezhilarasan, Apoorva and Ashok Vardhan, 2019; Ramadurai et al., 2019; Sridharan et al., 2019; Vijayashree Priyadharsini, 2019; Mathew et al., 2020)

The limitation of this present study can be improved by increasing the sample size. In the future, the present study can be a plan in better scope with larger sample size.

---

Fig. 1: Bar graph showing the occurrence of Radix Entomolaris in different gender. The X-axis represents the occurrence of Radix Entomolaris in male and female patients, and Y-axis represents the total number of patients reported. The bar chart depicted that the prevalence of Radix Entomolaris is higher in female patients with 0.47% (4 of 843).
CONCLUSION
Within the limitation of the study, it showed that the prevalence of Radix Entomolaris is 0.47% for females and 0.45% for males, with an overall 0.5% in both genders and more common in mandibular first molars this population. However, there is no significant evidence suggesting that gender plays a major role in the occurrence of Radix Entomolaris.

AUTHOR CONTRIBUTIONS
The authors have contributed to study design, data collection, analysis of data, tabulation of results, manuscript typing, and formatting. and critical reviewing.

ACKNOWLEDGMENTS
The authors thank Saveetha Dental College and Hospital, India for providing infrastructure support for the conduct of the study.

CONFLICT OF INTEREST
The authors deny any conflicts of interest regarding publishing this article.

REFERENCES
Mohamad Qulam Zaki Bin Mohamad Rasidi et al / Prevalence and gender association of radix entomolaris in mandibular molars

Mohamad Qulam Zaki Bin Mohamad Rasidi et al / Prevalence and gender association of radix entomolaris in mandibular molars


