Assessment of disease progression in patients with RMT carcinoma - A retrospective analysis of the associated factor.

SINDHU PRIYA KUPPUSSAMY SUNDARA MURTHY¹, DR. MAHATHI. N², DR. SURESH³

¹Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical sciences (SIMATS), Saveetha University, Chennai - 77, India.
²Reader, Department of Oral and Maxillofacial surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical sciences (SIMATS), Saveetha University, Chennai - 77, India.
³Reader, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical sciences (SIMATS), Saveetha University, Chennai - 77, India.

Abstract: Retromolar trigone is a subsite of oral cavity. It is a triangular mucosal area between the ascending ramus of the mandible attached to the muscles of mastication. Only at advanced stages after it involves the mandible or masticatory muscle does it result in severe pain or trismus. Data samples required for study were taken from hospital records. All the collected data were cross verified and compiled together in an excel sheet. Compiled data were statistically analysed in SPSS software. In this study of 27 patients, before treatment about 50% (14) had symptoms of trismus, after treatment out of the 50% of patients with trismus, 35.71% had 2 finger breadth mouth opening (trismus) and the rest of the patients (64.29%) had 3 finger breadth mouth opening.

Keywords: Retromolar trigone, Mastication, Trismus, Pain innovative technique

INTRODUCTION

The RMT begins at the third molar and extends cranially to the maxillary tuberosity. It is a small mucosal area continuous with buccal mucosa, upper and lower gingiva, soft palate, and floor of the mouth (Petruzzelli et al., 2003). In a study by Byers, It showed that the tumour extends to the following adjacent sites: soft palate, 65 patients (59%); buccal mucosa, 47 patients (43%); anterior tonsillar pillar, 93 patients (85%); and mandibular gingiva, 67 patients (61%). Radiographic evidence of bone invasion was present in 17 patients (15%). Involvement of the regional lymphatics is less often observed than it is for tonsillar or tongue base carcinomas. SCC of RMT is uncommon and has a high incidence of bone invasion and poor prognosis. Patients are diagnosed at advanced stages because tumour is benign for a long time until it involves the mandible or masticatory muscles, results in severe pain and trismus (Edge et al., 2010), (Byers et al. 1984). Most common treatment is surgery and post-operative radiation or chemotherapy. Some use a limited approach such as, posterior marginal mandibulectomy. The treatment of squamous cell carcinoma of the retromolar trigone is controversial. Determining the optimal management strategy is very difficult because it is a relatively uncommon tumor. The natural history and response to surgery and/or RT for head and neck cancers vary significantly depending on primary site and extent of disease. The choice of therapy is dependent on the extent of the tumor, nodal metastasis, and the medical status of the patient and comorbid conditions (Hao and Cheng, 2004). The 5-year survival rate of stage I is 100%, stage II is 74.1%, stage III is 75%, stage IV is 43.6% and stage N is 60.6%. The incidence of SCC occurring in RMT site is 7% (Mendenhall et al., 2005). The purpose of this study was to identify any trends in the number of cases or incidence rates at specific anatomic sites, in this case in RMT; and how it affects prognosis. Previously our team had conducted numerous clinical trials¹⁻¹¹ and lab animal studies¹²⁻¹⁹ and in-vitro students 20-21 over the past 5 years. Now we are focussing on epidemiological surveys. Our department is passionate about research we have published numerous high quality articles in this domain over the past years (Abraham et al., 2005; Devaki, Sathivel and BalajiRaghavendran, 2009; Neelakantan et al., 2010, 2015; Arja et al., 2013; Ramshankar et al., 2014; Sumathi et al., 2014; Surapaneni and Jainu, 2014; Surapaneni, Priya and Mallika, 2014; Ramamoorthy, Niveditha and Divyanand, 2015; Manivannan et al., 2017; Ezhillarasani, 2018; Ezhillarasan, Sokal and Najimi, 2018; J et al., 2018; Ravindran and Praveenkumar, 2018; Malli Sureshabab et al., 2019; Mehta et al., 2019; Krishnaswamy et al., 2020; Samuel, Acharya and Rao, 2020; Sathish and Karthick, 2020). The idea for this study stemmed from the current interest in our community.

Copyright © The Author(s) 2020. Published by Society of Business and management. This is an Open Access Article distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
MATERIALS AND METHODS

Study Setting: This retrospective study was conducted under a hospital based university setting.

Ethical approval: Ethical permission and approval for the project was obtained from the Institutional Review Board of Saveetha Institute of Medical and Technical Sciences, Chennai, India on 25/04/2020. Ethical approval number is SDC/SIHEC/2020/DIASDATA/0619-0320.

Inclusion Criteria: All the data of the patients in this study recorded were patients diagnosed with RMT carcinoma and had undergone treatment.

Exclusion Criteria: Exclusion criteria was case sheets with incomplete data, patients with other types of cancer and those patients who did not come for follow up visits when called.

Data collection: Data was collected from case sheets of patients who reported during the months of October 2019 and March 2020 from the hospital record management system where all the records of patients regarding their medical and dental history and treatment done are stored. All the data will be covered by the following. Cross verification was done to avoid bias by another examiner. To avoid missing any data, photographic evaluation was done. All the relevant data were retrieved and tabulated in excel sheet. Later, it was statistically analysed by IBM SPSS statistics.

Statistical Analysis: The descriptive statistics were used to determine the frequencies and percentages of the patients with RMT carcinoma. Chi square test was used to assess the association of RMT carcinoma with age and gender. The outcome data was represented in the form of a bar graph.

RESULTS AND DISCUSSION

The study consists of 27 patients, among which 18 were males and 9 were females. All 27 patients were diagnosed with RMT carcinoma. Before treatment, 50% (14) of patients had trismus (finger breadth) (Fig.1) and after treatment out of the 50% of patients with trismus, 35.71% had 2 finger breadth mouth opening and the rest of the patients (64.29%) had resolved mouth opening with 3 finger breadth mouth opening (Fig.3). Out of the 14 patients with trismus, 35.71% had 1 finger breadth mouth opening and 64.29% had 2 finger breadth (Fig.2). 17.86% from 30-45, 14.29% from 46-60, 17.86% from >60 age groups had no trismus. 14.29% from 46-60, 35.71% from >60 had trismus with a p value of 0.045 (<0.05) (Fig.5). 28.57% of males had trismus and the rest 39.29% had no trismus. 21.43% of females had trismus and the rest 78.57% had no trismus (Fig.4). After treatment, there was 14.29% with recurrence and 85.71% without recurrence (previous trismus) (Fig.6). After treatment, there was 21.43% with recurrence and 78.57% without recurrence (no previous trismus) (Fig.7).

RMT cancer commonly spreads along the pterygomandibular raphae and moves upwards to the maxillary sinus through its lateral wall. It is more commonly involved in maxillary bone (22.1%) than mandible (18%) (Wang et al., 2013). If RMT cancer invaded the mandible, the tumour penetrates through the teeth or the socket and not through the mandible cortex.

In case of superior extension of cancer to the masticatory space, segmental mandibullectomy is indicated for tumour resection (Antoniades et al., 2003). Combination of anterior mandibulectomy and posterior marginal mandibulectomy results in damage to the mandible's blood supply, resulting in osteoradionecrosis. So, it’s mostly indicated for soft tissue involvement (Antoniades et al., 2003).

RMT carcinoma are heterogeneous tumours by different tumour biology and local extension. In a study 22 patients underwent inferior maxillectomy of the posterior alveolar process of the upper jaw for cancer involving maxillary antrum. But, the incidence in mandibular bone was lower (91%) (Kowalski, Hashimoto and Magrin, 1993), (Genden et al., 2003). In another study by Goldie et al, with masticatory space involvement 3 had local recurrences, 8 died of the disease. Patients with masticator space involvement and mandible involvement had poor prognosis (Goldie, Soutar and Shaw-Dunn, 2006).

The adjuvant radiation therapy is reserved for patients with stage III and IV diseases. Madenhall et Al had 99 patients with irradiation alone or combined treatment of irradiation and surgery. 52% for irradiation and 69% for combination therapy where the survival rates (Skolnik, Campbell and Meyers, 1972).

Byers et Al suggested conservation of extent of mandible bone resections. But they had a 5-year-old survival rate of 20% (Byers et al., 1984).

This study could be further improved by increasing sample size and checking the various factors affecting the spread and prognosis of treatment of RMT carcinoma with trismus.

CONCLUSION

Oral squamous cell carcinoma is a commonly occurring oral cancer and it is associated with significant mortality and morbidity. The main disadvantage in RMT carcinoma is reduced mouth opening which occurs at advanced stages of the disease, which makes it difficult to provide acceptable cure and prognosis. To conclude, in this study, the majority of the patients had improved mouth opening after surgery and those with severe restriction of mouth.
opening also had a moderate increase in mouth opening after the surgery. The recurrence of disease in patients with carcinoma of RMT was less in both groups (with trismus and without trismus) after a 6 months follow up.

AUTHORS CONTRIBUTION

First author, Sindhu Priya performed the data collection by reviewing patient details, filtering required data, analysing and interpreting statistics and contributed to manuscript writing. Second author, Dr. Mahathir contributed to conception of study title, study design, analysed the collected data, statistics and interpretation and also critically revised the manuscript. Third author, Dr. Suresh V participated in the study and revised the manuscript. All the three authors have discussed the results and contributed to the final manuscript.

ACKNOWLEDGMENT

This research was supported by Saveetha Dental College and Hospital. We thank the department of Oral Medicine, Saveetha Dental College for providing insight and expertise that greatly assisted this research.

Conflict of interest: The authors declare that there is no conflict of interests.

REFERENCES

2. AJCC manual for staging of cancer. 2002 (Edge et al., 2010)
Sindhu Priya Kuppusamy Sundara Murthy et al / Assessment of disease progression in patients with RMT carcinoma - A retrospective analysis of the associated factor.

Assessment of disease progression in patients with RMT carcinoma - A retrospective analysis of the associated factor.

60. Surapaneni, K. M., Priya, V. V. and Mallika, J. (2014) ‘Pioglitazone, quercetin and hydroxy citric acid effect on cytochrome P450 2E1 (CYP2E1) enzyme levels in experimentally induced non alcoholic steatohepatitis (NASH)’, European review for medical and pharmacological sciences, 18(18), pp. 2736–2741.

GRAPHS

Fig.1: Bar graph represents the percentage of patients with and without trismus before treatment. X-axis represents the patients with and without trismus before treatment. Y-axis represents the percentage of patients. From the graph it is evident that before treatment of RMT cancer there was 50% without trismus (green bar) and 50% with trismus (blue bar).
Sindhu Priya Kuppusamy Sundara Murthy et al / Assessment of disease progression in patients with RMT carcinoma - A retrospective analysis of the associated factor.

Fig.2: Bar graph represents the amount of mouth opening of patients with trismus before treatment for RMT carcinoma. X-axis represents the amount of mouth opening. Y-axis represents the number of patients. From the graph it is evident that before treatment out of the 14 patients with trismus, 35.71% (grey) had 1 finger breadth mouth opening and 64.29% had 2 finger breadth (pink).

Fig.3: Bar graph represents the amount of mouth opening of patients with trismus after treatment for RMT carcinoma. X-axis represents the amount of mouth opening. Y-axis represents the number of patients. From the graph it is evident that after treatment out of the 14 patients with trismus, 35.71% (pink) had 2 finger breadth mouth opening and the rest of the patients (64.29%) had mouth opening of 3 finger breadth (purple).

Fig.4: Bar graphs represent the association between gender and RMT carcinoma. X-axis represents the gender of patients. Y-axis represents the percentage of RMT patients with trismus and no trismus. Males (28.57%) had a higher percentage of trismus than females (21.43%) (blue bar). Chi-square test was done and the association was found to be statistically significant. Pearson’s Chi-square value: 0.291, DF:2, p value: 0.045(<0.05) hence statistically significant, proving that more males than females represented trismus.
Fig.5: Bar graphs represent the association of age and RMT Carcinoma. X-axis represents the age of patients. Y-axis represents the percentage of RMT patients with trismus and no trismus. Majority of patients who had trismus (35.71%) (blue) were above 60 years of age. Chi-square test was done and the association was found to be statistically significant. Pearson's Chi-square value: 0.434, DF:2, p value: 0.045 (<0.05) hence statistically significant, proving that older the patients the higher the percentage of trismus.

Fig.6: Bar graph represents the number of patients with and without recurrence (with trismus). X-axis represents the patients with and without recurrence. Y-axis represents the number of patients. From the graph it is evident that after treatment, there was 14.29% with recurrence and 85.71% without recurrence (previous trismus).

Fig.7: Bar graph represents the number of patients with and without recurrence (without trismus). X-axis represents the patients with and without recurrence. Y-axis represents the number of patients. From the graph it is evident that after treatment, there was 21.43% with recurrence and 78.57% without recurrence (no previous trismus).