Preventive Management of Covid 19 Using Soap and Hand Sanitizer
-A Review.

KAVIYA. L¹, A.K ANJALI²*, JAYALAKSHMI SOMASUNDARAM³

¹Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai- 600077,
²Tutor, Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai- 600077,
³Chief Scientist, White Lab - Material research center, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai- 600077.

Abstract: Handwashing is thought to be effective for the prevention of transmission of infectious pathogens. Scientific studies have shown that after hand washing 80% of individuals retain some pathogenic bacteria on their hands. The purpose of handwashing is to remove potentially harmful organisms from hands preventing the transmission from person to person. Handwashing with non-antibacterial soap and sanitizer was more effective for the removal of bacteria in the prevention of transmission of infectious diseases. Effective handwashing with soap requires reliable access to the quality of water used. The antimicrobial antibacterial, antiviral efficacy of alcohol-based hand sanitizers and soap were compared. The use of soaps for hand hygiene appeared to be less efficacious against Gram-negative organisms. The comparative study addresses the feasibility and health impacts of promoting hand sanitizer as an alternative hand hygiene option for which water-constrained environments should be assessed. However, both hand sanitizers and soaps can be used as effective measures to control the spread of diseases.

Keywords: Hand washing; Sanitizer; Soap; Bacteria.

INTRODUCTION
Hand hygiene is associated with disease prevention and health promotion, and the importance of hygiene is universally recognized and evidence-based (Erasmus et al., 2010),(Mp, Brundha and Nallaswamy, 2019). The spreading of germs can be prevented by effective hand washing practices. Germs are microorganisms such as bacteria and viruses that may lead to harmful diseases. Physical contact between people and objects is a key vehicle for the transmission of pathogens(Aiello et al., 2008). Therefore, effective hand hygiene is a way to prevent diseases. Decontamination of hands can be carried out either by handwashing with soap or by the use of waterless hand sanitizers, in situ(Ansari et al., 1988),(Brundha, Pathmashri and Sundari, 2019). The effect of hand hygiene in reducing infectious disease could be increased to apply hand hygiene procedures correctly (eg, wash their hands correctly) and at the correct time (Luby et al., 2011). To optimize health benefits, CDC recommends after washing hands with soap and water, the hands should be dry because wet hands spread germs more than dry ones(Timothy, Sanyukthta and Brundha, 2019). Our team has rich experience in research and we have collaborated with numerous authors over various topics in the past decade (Deogade, Gupta and Ariga, 2018; Ezhilarsan, 2018; Ezhilarsan, Sokal and Najimi, 2018; Jeevanandan and Govindaraju, 2018; J et al., 2018; Menon et al., 2018; Prabakar et al., 2018; Rajeshkumar et al., 2018, 2019; Vishnu Prasad et al., 2018; Wahab et al., 2018; Dua et al., 2019; Duraisamy et al., 2019; Ezhilarsan, Apoorva and Ashok Vardhan, 2019; Gheena and Ezhilarsan, 2019; Mali Sureshbabu et al., 2019; Mehta et al., 2019; Panchal, Jeevanandan and Subramanian, 2019; Rajendran et al., 2019; Ramakrishnan, Dhanalakshmi and Subramanian, 2019; Sharma et al., 2019; Varghese, Ramesh and Veeraiyan, 2019; Gomathi et al., 2020; Samuel, Acharya and Rao, 2020). In this study, comparative analysis of handwashing with soap and hand sanitizer was discussed.

Mechanism of soap
Soap works by breaking up the oil into smaller drops, so it can mix with the water. Soap molecules are a type of surfactant, which means hydrophilic, and hydrophobic end (Shenoy, 2016). Soap molecules act as a mediator between oil and water molecules and bind with both of them at the same time. Then when you rinse everything off, the soap carries away the germs with the water(Langley, 2002).
Mechanism of hand sanitizer
It works by killing microbial cells. It contains 70 % isopropyl alcohol, which is rubbing alcohol. That’s the concentration of rubbing alcohol that is most effective in killing germs(Harsha and Brundha, 2017). Because it has a little bit of water in it, it improves penetration. For virus - sanitizer works by disrupting the virus’s outer coat. For bacteria - it works by disrupting its cell membrane (Rai et al., 2017).

Efficacy - Soap and Hand Sanitizer
Soap
The non-antibacterial soap is much more effective in removing bacteria from hands than hand washing with water only(Boyce, 2001), (Brundha, 2015). Studies of the efficacy of hand hygiene agents have shown that antiseptic agents (antimicrobial soaps or waterless antiseptic hand rubs) are significantly more effective in reducing microbial counts on the skin than plain soap and water hand washing in reducing skin flora(Pittet and Boyce, 2001),(Selwyn, 1982).

Hand sanitizer
The advantage of using alcohol-based hand sanitizer is often less irritating to the hands. Excessive handwashing with soap and water can cause skin damage and increase the risk for infections(Varshini, Rani and Brundha, 2020), (Greenaway et al., 2018). The CDC recommends the use of alcohol-based hand rubs containing various emollients and other skin conditioners instead of irritating soaps and detergents as a strategy to reduce skin damage, dryness, and irritation(Kumar, Ashok Kumar and Brundha, 2016). Allergic contact dermatitis associated with alcohol-based hand rubs is uncommon(Cure and Van Eek, 2015),(Kalaiselvi and Brundha, 2016). The Draft Guideline for Hand Hygiene in Healthcare Settings concluded that alcohol-based hand rubs are more effective than washing hands with antimicrobial or nonantimicrobial soap.

Antibacterial And Antimicrobial Activity - Soap And Hand Sanitizer
Handwashing with soap was less efficacious against fecal streptococci on hands compared with its efficacy against E. coli. Hand sanitizer performed better than handwashing with soap at reducing concentrations of E. coli and fecal streptococci on hands(Burton et al., 2011),(Ravichandran and Brundha, 2016). In contrast, hand sanitizer was observed to reduce levels of E. coli and levels of fecal streptococci comparably(Prashaanthi and Brundha, 2018). Enterococcus is a Gram-positive bacterium, and E. coli is a Gram-negative bacterium. Enwa Felix O et al revealed that Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus species, and Shigella species are present in the hands of humans. The result also revealed better efficacy of the alcohol-based hand sanitizers in comparison to the soaps because all four bacterial isolates were susceptible to hand sanitizers and soaps had no effect against Gram-negative Shigella species which makes them less efficacious(Sardar, 2017),(Preethikaa and Brundha, 2018).

Antiviral Property
Alcohol-based hand sanitizers are an effective deterrent to the transmission of enveloped viruses such as influenza virus, hepatitis B virus, and herpes simplex viruses 1 and 2 (Kampf and Kramer, 2004), (Ferdioz and Brundha,2016) But they are less effective for controlling the transmission of human enteric viruses, particularly the epidemiologically important Human norovirus group. The alcohol-based hand sanitizers are relatively ineffective against Norovirus (Fankhauser et al., 2002). Even though water washing, with or without the addition of antibacterial soap, can remove some NV from fingers(Atmar et al., 2008)

Contraindications
Hand sanitizer
Alcohol containing hand sanitizer has very poor activity against protozoan oocysts, certain non-enveloped (non-lipophilic) viruses, and bacterial spores(Hannah et al., 2019). Alcohol gel kills the vegetative cell form of Clostridium difficile but does not kill C. difficile spores(Takahashi et al., 2018). Several studies have found handwashing with soap and water to be more effective at removing C. difficile spores than ABHS. Interestingly, a study of farmworkers demonstrated that those who used hand sanitizer were found to have elevated concentrations of urinary pesticide metabolites(Knighton et al., 2017). The efficacy of alcohol-based hand sanitizer is affected by several factors such as the type, concentration, and volume of alcohol used, the contact time, (CDC, 2002), the test method (in vivo and in vitro), target organisms and matrix(Liu et al., 2010).

Soap
Scientists have also found that antibacterial soap weakens the human immune system and kills beneficial bacteria that live on the skin’s surface since triclosan indiscriminately kills bacteria(Levy, 2001). The issue of antimicrobial resistance has led many scientists to encourage the shift from antibacterial to plain soap which can be as effective in cleaning hands without exacerbating the issue of resistance(Shreya and Brundha,
CONCLUSION

The outbreak of epidemic infections such as Ebola hemorrhagic fever HIV, Diarrhea, Coronavirus, etc., are highly infectious and can be easily transmitted through infected hands. Hand sanitizer kills viruses and certain bacteria does not remove actual dirt and debris. Soap kills germs, binds them, and helps physically remove them with water, of your skin, and down the drain. The use of soap and water for hand hygiene can be effective if there is the availability of clean water. Hand sanitizers are preferable because they have rinsed free, do not require water. However, when hands are dirty, hand sanitizers are not as effective as soap for cleaning. Finally, this study shows soap and water is an effective method this study shows soap and water is an effective method of removing harmful microorganisms than hand sanitizer. However, hand hygiene is essential for good health benefits for social and economic developmental purposes.

REFERENCES

36. Mathew, M. G. et al. (2020) ‘Evaluation of adhesion of Streptococcus mutans, plaque accumulation on zirconia and stainless steel crowns, and surrounding gingival inflammation in primary molars: Randomized

