
P.G. SUSHMA¹, N.P. MURALIDHARAN², S. KAVITHA³

¹Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai.
²Associate professor, Department of microbiology, Saveetha Dental College, Saveetha University, Saveetha Institute of Medical and Technical Sciences.
³Assistant Professor, Department of Biochemistry, Saveetha Dental College. Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai.

*Corresponding Author
Email: muralidharan@saveetha.com

Abstract: Introduction: Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered virus. Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. The best way to prevent and slow down transmission is by taking precautions that would block the transmission route. At this time, there are no specific vaccines or treatments for COVID 19. Thus, this survey to understand the community-level cooperation in controlling the spread of corona is very important.

Materials and Methods: A survey was conducted among 234 residents of the community. They were given a questionnaire to assess the community level cooperation. They were given a questionnaire consisting of 25 questions through google forms. The responses were collected and were statistically analyzed through SPSS software.

Results: This survey revealed that 87.2% are aware of social distancing and 64.1% practice social distancing regularly. 89.7% said they wash their hands regularly with soap and 54.7% use disinfectant to clean the vegetables brought from the market. 65% regularly use a face mask for their protection. Through this survey it is found that there is awareness of the risk of acquiring the infection but the safety measures are not strictly followed.

Keywords: Covid-19, Community, Social Distancing, Public Health Measures

INTRODUCTION
Coronavirus disease 2019 (abbreviated “COVID 19”) is an emerging respiratory disease that is caused by a novel virus and was first detected in December 2019 in Wuhan, China. The disease and its main clinical symptoms include fever, dry cough, fatigue, myalgia, and dyspnea (Anand et al., 2003). Some unprecedented measures have been adopted to control the COVID 19 transmission all over the world, including the suspension of public transportation, the closing of public spaces, close management of communities and isolation and care for infected people and suspected cases (Yang et al., 2020). With the novel coronavirus epidemic causing shock waves and panic across the world, the world health organization (WHO) officially named it COVID 19 and announced it as a public health emergency of international concern on January 31 (Kuhar et al., 2020; Yang et al., 2020). The WHO has only declared such emergency incidents 6 times. Immediately after, in just 40 days, the (Selvakumar and Np, 2017) WHO announced that the COVID 19 has entered a global pandemic state (Liu et al., 2020). The number of confirmed cases worldwide has exceeded 542,803, the number of deaths worldwide has reached 20,663 and the epidemic has spread to 206 countries, areas, or territories (Hultstöm, von Seth and Frithiof, 2020; Quadri et al., 2020). Statistics from WHO indicated that it took 67 days from the first reported case to reach the 1,00,000 and 11 days for the second 1,00,000 cases, which indicates that the pandemic is extremely accelerating and the prevention and control situation is not optimistic (Levy and Talbot, 2012; Ashwin and Muralidharan, 2015). Defensive measures such as physical distancing measures are taken as a useful way to slow down the spread of COVID 19. Moreover, aggressive and targeted tactics such as tracing and quarantining close contact also should be adopted to attack the COVID 19 (Girija et al., 2019). It obviously demonstrated that effective epidemic prevention and control have become the first task (Girija, Jayaseelan and Arumugam, 2018; Girija As and Priyadharsini J, 2019). The community is the foundation for implementing grid-based emergency management and the first defense line for infectious disease prevention and control (Renuka, Ramamurthy and Muralidharan, 1998). Risk communication and
community engagement (RCCE) is particularly important for public health. This sudden and deadly new acute infectious disease epidemic has plunged countries around the world into the predicament of emergency response, who are struggling with the capacity to carry out offensive measures for fighting the epidemic (Shahana and Muralidharan, 2016). However, the implementation of the basic infection control protocols is possible only when people and employees are made aware of the introduced policies by giving them clear guidelines (Marickar, Geetha and Neelakantan, 2014). Awareness level and compliance of the educational and health care workers play an important role in the effective and timely prevention and control of a public health crisis (Priyadharsini et al., 2018; Girija et al., 2019). To formulate healthy policies, the multidisciplinary teams including key front line workers should be a part of the policy planning to ensure that these policies function effectively (Pratha, Ashwatha Pratha and Geetha, 2017).

India is a country of vast socio-cultural diversity, health inequalities and economic disparity presented with challenges and threat by the growing pandemic of COVID 19 (Vijayashree Priyadharsini, Smiline Girija and Paramasivam, 2018). Enforcement of immediate lockdown, which was priced by WHO as “tough and timely” and cluster containment to break the chain transmission, are effective approach (Priyadharsini et al., 2018; Girija et al., 2019; Paramasivam, Vijayashree Priyadharsini and Raghunandhakumar, 2020). One threat to the COVID 19 response in India is the ubiquitous spread of misinformation by raising falsehoods during the crisis is dangerous because it can mislead and confuse the public (Selvakumar and Np, 2017; Vaishali and Geetha, 2018). The important ways which can reduce the chance of being infected by COVID 19 are regularly and spotless hands with a (Vaishali and Geetha, 2015) alcohol-based hand rub, maintaining at least 1-meter distance from others, avoiding going to public places, staying home and self-isolating even with minor symptoms such as cough, headache, mild fever and keeping an update on the latest information from trusted sources (Priyadharsini et al., 2018; M, Geetha and Thangavelu, 2019). Our team has rich experience in research and we have collaborated with numerous authors over various topics in the past decade (Deogade, Gupta and Ariga, 2018; Ezharasran, 2018; Ezharasran, Sokal and Najimi, 2018; Jeevanandan and Govindaraju, 2018; J et al., 2018; Menon et al., 2018; Prabakar et al., 2018; Rajeshkumar et al., 2018, 2019; Vishnu Prasad et al., 2018; Wahab et al., 2018; Dua et al., 2019; Duraisamy et al., 2019; Ezharasran, Apoorva and Ashok Vardhan, 2019; Gheena and Ezharasran, 2019; Malli Sureshbabu et al., 2019; Mehta et al., 2019; Panchal, Jeevanandan and Subramanian, 2019; Rajendran et al., 2019; Ramakrishnan, Dhanalakshmi and Subramanian, 2019; Sharma et al., 2019; Varghese, Ramesh and Veeraiyan, 2019; Gomathi et al., 2020; Samuel, Acharya and Rao, 2020).

The main aim of this survey is to understand the community-level cooperation in controlling the spread of the corona epidemic. Materials and Methods

An online survey was conducted among 234 random selected people on community-level cooperation in controlling the spread of the corona pandemic. This online survey consisted of 25 questions that were distributed to the study population through google forms. Salient points covered in the questionnaire included social distance, usage of mask and hand sanitizer, usage of disinfectant, and hand sanitizer. The questionnaire validity checking was done in a standard manner. The responses were collected and were entered into an excel sheet. The quantitative analysis was used to make a comparative analysis of the pandemic situation. The data was then entered and statistically analyzed through SPSS Software’s recent version.

Inclusion Criteria
ability to read and understand English, ability to give informed consent

Exclusion Criteria
people refusal, psychiatric problem, not able to read and write English

RESULTS
The results for this survey are put forth by using a pie chart to analyze the statistical data that has been obtained.
Fig. 1: Piechart represents the age of the participants. 20.1% of participants were below 20 years, 38.9% was between 20 and 30 years, 24.4% was between 30 and 40 years, 9.8% was between 40 and 50 years, and 1.7% was above 60 years.

Fig. 2: Piechart represents the gender of the participants among the respondents. 49.6% was females and 50.4% was male.

Fig. 3: Pie Chart represents participant's washing hand with soap. The above pie chart represents that 89.7% wash their hands with soap and 10.3% don't wash with soap as regular practice.
Fig. 4: Pie chart represents participant's opinion about soap against COVID 19. 59.4% said yes soap washing kills the virus, 24.4% said no.

Fig. 5: Bar chart representing association between belief that soap washing kills the virus and washing hands with soap. X axis represents washing hands with soap and Y axis represent belief that soap washing kills the virus. Chi square test was done and association was found to be statistically significant. Pearson's Chi square value: 8.904, DF: 2, P value: 0.01 (<0.05) hence, statistically significant, proving that people who believed that soap washing kills the virus washed their hands regularly.
Fig. 6: Pie chart represents the use of disinfectant soap to wash hands. 63.75% said yes that they use disinfectant soap to wash hands and 24.8% said no while 11.5% said maybe.

Fig. 7: Bar chart representing association between coronavirus transmitted by hand contamination and those who wash their hands. X axis represents coronavirus transmitted by hand contamination and y axis represents washing hands with soap. Chi square test was done and association was found to be statistically significant. Pearson’s Chi square value: $13.828, DF: 2, P$ value: $0.001 (<0.05)$. Hence, statistically significant proving the amount of people who said that coronavirus is transmitted through hand contamination usually washed their hands regularly with soap.

Fig. 8: Pie chart represents symptoms of respiratory infection among participants. 30.8% have symptoms of respiratory infection and 69.2% don’t have.
Fig. 9: Pie chart represents, participants who have used hand sanitizer before this outbreak, 72.2% of the population has used hand sanitizer before the corona outbreak and 27.8% have not used it.

Fig. 10: Pie chart represents taking vegetables into the kitchen without decontaminate, 31.6% take vegetables directly into the kitchen and 62% don't take it directly and 6.4% take it at times.

Fig. 11: Pie chart represents soaking of vegetables in household disinfectant 54.7% said they soak the vegetables in household disinfectant 45.3% said no.
Fig.12: Pie chart presents ordering cooked food online. 67.1% don’t order cooked food online while 32.9% order cooked food online.

Fig.13: Pie Chart represents if respiratory virus can be transmitted from patients even with PPE. 58.1% know that a respiratory virus transmits from a patient even with personal protective equipment, an 23.9% said no it will not transmit with personal protective equipment.

Fig.14: Pie chart represents the color of the area the participants live. 44.4% of the study population live in area marked red color, 44.4% in orange color and only 11.1% in green color.
Fig. 15: Pie chart represents awareness about importance of social distancing. The above pie chart represents that 87.2% were aware of social distancing and 12.8% were not aware.

Fig. 16: Pie chart represents participants practicing social distancing. The pie chart represents that 64.1% practice social distance and 28.2% don’t practice.

Fig. 17: Pie Chart represents the transmission of coronavirus by aerosol. Pie charts says that coronavirus is transmitted by aerosol, 62.8% said yes, 28.5% no and 10.7% maybe.
Fig. 18: Pie chart represents the transmission of coronavirus through objects. 62.4% said yes, 29.9% said no and 7.7% said maybe.

Fig. 19: Pie chart represents the transmission of coronavirus through hand contamination. 65.8% said yes, 28.6% said no and 5.6% said maybe.

Fig. 20: Bar chart representing association between coronavirus is transmitted by hand contamination and using of hand sanitiser during coronavirus outbreak. X axis represents coronavirus is transmitted by hand contamination and y axis represents usage of hand sanitiser during this corona viral outbreak. Chi square test was done and association was found to be statistically significant. Pearson's Chi square value: 23.92, DF: 4, P value: 0.00 (<0.05). Hence, statistically significant, proving that those who were aware that coronavirus is transmitted by hand contamination used hand sanitiser.
Fig. 21: Pie chart represents participants visiting their friends and relatives, 49.6% have gone out to visit their friends and relatives home during the lockdown and 50.4% have not gone out.

Fig. 22: Pie chart represents friends and relatives visiting participant’s houses. The above chart says 48.7% of friends and relatives have not visited the study sampled house while 51.3% have visited.

Fig. 23: Pie chart represents how many times in a week participants go out to the public place. 32.9% haven’t gone out during lockdown, 36.8% went out once every week, 21.8% went out twice a week, and 8.5% went out multiple times.
Fig. 24: Bar chart representing association between awareness about social distancing and number of times a week they went out to public places. X axis represents awareness about social distancing and y axis represents the number of times a week they went out to public places. Chi square test was done and association was found to be statistically significant. Pearson’s Chi square value: 4.152, DF: 3, P value: 0.24 (>0.05) hence, statistically insignificant, proving the percentage of people aware about social distancing is high but the people following it is very low.

Fig. 25: Pie chart represents if participants regularly use masks. 65% regularly use masks, 26.9% don’t use them regularly, 8.1% use masks at times.

Fig. 26: Pie chart represents if the lock down needs to be extended. 67.8% want the lockdown to continue until this pandemic ends, 32.3% don’t want this lockdown to continue.
DISCUSSION
In this current survey, 89.7% of the population regularly wash their hands with soap, but according to a survey conducted by academic rigor, journalistic flair survey respondents did not wash their hands regularly with soap. Which is a contradiction with the current study. The possible reason is less knowledge and personal hygiene in the previous survey.

According to an survey by Yusra Murad et al., only 19% said they are following social distancing and lockdown properly, but in our current study more than 64.1% practice social distancing and 32.9% have never gone out during this lockdown phase. The previous study was in contradiction with our current study in our population, the possible reason would be the high awareness among people. In our study, 89.7% wash their hands regularly with soap and 75.6% use alcohol, based hand sanitizer, 54.7% soak vegetables in household disinfectant after buying them from the market. 64.1% practice social distancing properly and strictly and also 65% uses mask regularly, thus the participants had widely good knowledge over community-level cooperation to control the pandemic (Sohaib Shahzan, Smiline Girija and Vijayashree Priyadharsini, 2019).

The limitations of this survey was the sample size, limited knowledge, different lifestyles and different opinions (Girija et al., 2019; Paramasivam, Vijayashree Priyadharsini and Raghunandhakumar, 2020). The future scope of this survey is more inventions and regulations to protect us from pandemic disease and also to educate more people about community-level cooperation in controlling the spread of corona (Smiline, Vijayashree and Paramasivam, 2018). Our institution is passionate about high quality evidence based research and has excelled in various fields (Pc, Marimuthu and Devadoss, 2018; Ramesh et al., 2018; Vijayashree Priyadharsini, Smiline Girija and Paramasivam, 2018; Ezhilarasan, Apoorva and Ashok Vardhan, 2019; Ramadurai et al., 2019; Sridharan et al., 2019; Vijayashree Priyadharsini, 2019; Chandrasekar et al., 2020; Mathew et al., 2020; R et al., 2020; Samuel, 2021).

CONCLUSION
People living in contaminated zones are being more ignorant towards the safety imposed by the government and non-compliance is seen in the educated section too. Within the limits of the survey, the knowledge and awareness about community-level cooperation in controlling the spread of the corona epidemic were evaluated. It was found that our study population had slightly good knowledge about community-level cooperation. This can be further improved through more awareness programs and more technological guidance to combat this highly contagious virus.

REFERENCES

